Student number | 110059347

Advanced Computer Graphics

WebGL 3D visualisation of the solar system

Abstract

This paper describes the considerations and difficulties involved in constructing a
3D visualisation of the solar system using WebGL, following a modularised, object-
oriented JavaScript coding style without the assistance of libraries such as Three.js.

It details the structure of the program, both from a client-side and pre-production
processing perspective. It goes on to describe the caveats of development (the self-
imposed requirement of passing scientifically correct parameters to the
constructors), and the results of the completed work, including tests to validate the
application behaviour. There follows a conclusion and a self-evaluation of how well
the assignment was completed.

The program, accompanied by this paper, contributes a reusable, modularised and
extendible codebase to the field of 3D visualisations for the web. The
implementation includes:

* Animated, texture-mapped spheres representing all of the planets of our
solar system in circular orbits.

* Earth’s Moon and Jupiter’s Galilean moons orbiting their respective planets.

* Saturn’srings.

* Specular mapping for the Earth, so that light is reflected more strongly from
the ocean than the continents.

* Configurable Phong-shading parameters, with light appearing to emanate
from the Sun.

* A means of navigating the solar system through keyboard and mouse
controls.

A live demo is available here: http://users.aber.ac.uk/cbal/webgl/source/

Introduction

The assignment required building a 3D visualisation of the solar system, the aim
being to gain familiarity with WebGL and its implementations of
transformations, texture mapping, shading and animation.

This wasn’t the first reproduction of the solar system in WebGL; other
visualisations already existl. However, the scope for the assignment would allow
us to go above and beyond what others have managed to achieve in previous
visualisations, including semi-transparent rings of Saturn, specular mapping,
keyboard and mouse controls and configurable lighting effects.

L http://mgvez.github.io/jsorrery/, accessed 17/11/2014

Student number | 110059347

Methods

Assignment structure

My assignment comprises both front-end and back-end parts. The back-end uses
Grunt (written in Node.js) and encapsulates formatting checking and
documentation generation. The front-end uses the Require JavaScript library to
handle dependency management and to modularise the code.

Application structure

README.md - the markdown file associated with my project. I intend to
open source my program on or after the submission deadline.
Gruntfile.js - defines the tasks I want to automate.
package.json - a file used by Node to install Grunt’s dependencies and the
dependencies of all of its registered tasks.
/source - contains the source code of the application.
o index.html - runs the application.
o textures/ - contains the planet image textures.
o Jjs/ - contains the JavaScript for the application.
* main.js - the file initially downloaded in index.html. Uses
Require to handle downloading its dependencies.
» [ib/ - contains third-party JavaScript libraries.
* app/ - contains my own JavaScript code for the application.

Program structure
Inside source/js/app/, we have these files:

app.js - entry point for the application (pulled into source/js/main.js).
astronomical_object.js - defines my class for Astronomical Objects,
including the Sun, Planets, Moons, Saturn’s Rings and the Galaxy.
buffers.js - handles initialising the buffers and drawing the individual
elements that make up the astronomical objects.

camera.js — defines the projection view matrix of the ‘camera’ in the
‘world’, and defines functions allowing the user to manipulate the camera.
controls.js - defines mouse and keyboard controls.

controls__gui.js - dynamically creates the graphical user interface
surrounding the canvas, allowing the user to adjust lighting conditions
and orbital speeds.

gljs - handles getting the WebGL context.

lighting.js - handles getting the lighting parameters from the GUI and
preparing the shaders for drawing.

shader__fragment.shader - contains my fragment shader program.
shader__vertex.shader - contains my vertex shader program.

shaders.js - defines the JavaScript attributes that link to the custom
shader code.

solar_system.js - defines all of the Astronomical Objects that compose my
solar system.

Student number | 110059347

Matrix methods

Figure 1. An early design for my orbiting algorithm

Orbiting was by far the most difficult algorithm to perfect in the assignment.
Figure 1 shows the complication of the orbital steps even without the
complication of bodies spinning on their axes.

For planets, the process was relatively straightforward: translate to the origin of
the Sun, rotate by a small orbital angle then translate back out by the same
distance.

The algorithm of the moon’s orbit is more complex:

* Translate to the origin of the orbited planet.

* Rotate back to the original starting angle (to be in line with the Sun).
* Translate to the origin of the Sun.

* Rotate by the last orbit angle of the orbited planet.

* Translate back out by the planet orbital distance.

* Rotate by the new moon orbit angle.

* Translate back out by the moon orbital distance.

Student number | 110059347

Taking into account bodies spinning on their axes adds additional complexity.
Before each translation, the body must be rotated by the negative value of the
cumulative rotation angle to date. After the translation, the body is rotated by the
cumulate rotation angle to date (resetting its last orbit) plus a new small rotation
angle, so that frame by frame the body slowly rotates on its axis.

Orbits and rotations required the following glMatrix functions:

* mat4.rotate() - to rotate/orbit.

* mat4.translate() - to translate to the origin of the body being orbited,
allowing orbiting behaviour.

* mat4.multiply() - to multiply orbit and rotation by the local model view
matrix so that the changes take effect.

* mat3.normalFromMat4() - extracts the normal from the model view
matrix (required for Phong shading).

Source/js/app/camera.js uses:

* mat4.perspective() - change the projection of the world according to the
height and width of the canvas, and given a certain degree of view.
* mat4.identity() - resets the camera matrix (used in the snapTo function).

Timing considerations

[wanted my system to be scientifically accurate, so source/js/app/solar_system.js
passes scientifically correct parameters, which dictate orbital and rotational
speed. A further complication is the fact that the number of milliseconds that
represents a day is configurable, hence millisecondsPerDay is passed to the
animate function in source/js/app/astronomical_object.js and is used to
determine the amount by which each body should move per frame.

Data structures & coding considerations
source/js/app/astronomical_object.js describes the data structure for my
Astronomical Objects, which represent everything rendered on the canvas.
Although Saturn’s Rings may seem very different to, say, Mars, enough code is
shared that splitting into separate classes would create unmaintainable code
duplication.

Almost every astronomical object needs to hook into the animate() function and
use the number of milliseconds representing a day, to calculate the amount of
orbiting and rotation required. Every object has a shape and must be rendered.
Conceptually, Saturn’s Rings are the most unique object in my solar system, but
only differ from planets and moons in that they’re represented as a cuboid rather
than a sphere. They differ only from moons in that they have an orbital distance
of zero, i.e. are not translated away from Saturn but are rendered from Saturn’s
origin.

Student number | 110059347

Results

Figure 2. Screenshot of part of my solar system implementation, depicting the Sun,
Jupiter, Saturn and its Rings, the Earth and the Moon, and the Galaxy

Solar system composition
* The Sun
* The following planets, orbiting the Sun:
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
* The Earth’s Moon, orbiting the Earth
* Jupiter’s Galilean Moons (lo, Europa, Ganymede, Callisto), orbiting Jupiter
e Saturn’s Rings
* Galaxy ‘skybox’ encasing my solar system and providing a better
perception of depth

0O O o0 O o0 O o0 O

Saturn’s rings are on a scientifically accurate tilt and are semi-transparent, as can
be seen in Figure 3. They’re rendered as a flat cuboidal element with blending
enabled, as suggested in the assignment brief.

All of the planets and moons are passed scientifically correct parameters (seen in
source/js/app/solar_system.js) regarding orbital distance, orbital and spin period,
radius and axis. These are normalised in source/js/app/astronomical_object.js.

Student number | 110059347

By ‘normalised’, I mean that orbital distances of the planets and moons are
accurate relative to one another, but for presentational purposes have been
scaled down by a factor of 50,000. Similarly, radii are proportionally accurate to
one another but are scaled down by a factor of 100, and in the case of the Sun,
1000.

Finally, orbital distances and rotation speeds are in proportion to one another,
and can be sped up or slowed down using the GUI sliders available. By default,
one second in my program is equivalent to one Earth day.

Figure 3. Screenshot showing the transparency of Saturn’s Rings.

Orbital testing

Planets and moons spin and orbit counter clockwise with the exception of Venus
and Uranus, who rotate on their axis in a clockwise fashion due to their axial tilt.
The easiest way to confirm this is to hit keyboard shortcut ‘7’ to view Uranus
spinning clockwise.

In order to ensure the orbits are working correctly, [produced these conditions
(seen in Figure 4):

* Set the Earth day to be equal to 1000 milliseconds

* Press ‘3’ to snap the camera to Earth

* Make a mental note of the position of the Moon in relation to Earth.

* Count for 28 seconds, slowly moving the camera (or repeatedly pressing
‘3") to follow Earth’s movement.

* The Moon should have orbited the Earth and be back at its original
starting position.

* In addition, try and follow a specific continent on Earth and you’ll see that
the Earth takes 1 second to fully rotate.

Student number | 110059347

Figure 4. Checking the moon’s orbit matches the number of full Earth rotations

To test the correct orbital speeds of the planets orbiting the Sun, reproduce these
conditions:
* Press T’ to reset the camera.
* Drag the canvas so that we have a bird’s-eye view of the Sun and the
planets orbiting it.
* Speed up time to be 100 milliseconds per Earth day.
* Watch Mercury - it takes 87.66 Earth days to orbit the Sun, so should take
around 8.77 seconds to go around the Sun once.

Specular maps

Figure 5. Phong shading of the Earth with specular maps

Student number | 110059347

Using the black and white GIF of the Earth from Learning WebGL2, [added
specular mapping so that the naturally shiny parts of the Earth (i.e. the ocean)
reflected light more strongly than the continents, which are more dense and
opaque. This can be seen in Figure 5, which shows the specular effect on pure
ocean and also on a combination of ocean and land. It is difficult to capture the
effect in a screenshot. Instead, to recreate the conditions using the application:

* Press 1’ to reset the camera.

* Slow down time (1 Earth day = 5000 milliseconds).

* Use a combination of the W, A, S, D keyboard controls and the mouse to
try and get the Earth into view.

* To maximise the effect, lower the Ambient Light levels to zero and
increase the Specular term globally to 1.0.

Note: planets that use specular mapping are unaffected by changes to the global
‘Planet shininess’ input.

GUI Controls

The GUI has a slider for speeding up and slowing down time, which affects the
time taken for planets and moons to complete their orbits and full rotations.
There is a slider affecting the ‘shininess’ property of planets for specular shading.
Finally, there are three ‘global’ sliders affecting the overall RGB values of the
Ambient Light, Specular Light and Diffuse Light terms, as well as individual
sliders for each colour spectrum of each term. These are immediately reflected in
what is rendered on the canvas, whether or not the animation is paused.

Time Planet shininess

Fast Slow 0= 100
1 Earth day = 1 second

Ambient Light - Global Specular term - Global Diffuse term - Global
0 1 Qe 1 o= 1
Ambient Light - Red Specular term - Red Diffuse term - Red

0 1 Q= 1 Q=0 1
Ambient Light - Green Specular term - Green Diffuse term - Green

0 © 1 [1 Q= 1
Ambient Light - Blue Specular term - Blue Diffuse term - Blue

0 1 Q= 1 Q= 1

Figure 6. Screenshot of the GUI controls generated by the program

2 http://learningwebgl.com /blog/?p=1778, accessed 19/11/2014

Student number | 110059347

The GUI elements are rendered using JavaScript to allow for further
configuration in future, without forcing people who may be using my code to
manually update their HTML. It also gives me the freedom to add a configuration
property, which would allow users/website hosts to turn the GUI on or off.

Other Controls

The user’s position in the solar system can be manipulated by dragging the
canvas using the mouse, which changes the user’s perspective. In addition to
mouse controls, my program has numerous keyboard controls:

* P - pause animation

* F -toggle Full Screen Mode

* R -reset camera to original position

* W, A S, D - controls allowing movement around the solar system. Holding
down any one of these keys for a period of time accelerates the movement
speed, making movement reasonably quick.

* 1-8 - snaps the camera to an associated planet. Full instructions can be
viewed by clicking the ‘Toggle instructions’ link at the top of index.html.

Discussion

[decided against using a global matrix stack for maintaining the positions and
rotations of the system, preferring the more object-oriented approach of having
each Astronomical Object handle its own matrix history.

[believe this was the right decision, but it did make the planets’ orbits (and
particularly the moons’ orbits) quite a complex mathematical problem to solve.
Throughout my source/js/app/astronomical_object.js class I check if the current
object orbits something that orbits something else, conditionally performing
different operations depending on the result. As it stands, my program would not
be able to cope with a triple-orbit hierarchy without some significant refactoring
Additionally I found elliptical orbits too difficult to integrate into my system in
the remaining time.

Conclusion and self-evaluation

This was a challenging assignment with plenty of scope for creativity and
additional functionality. Though difficult, it was enjoyable to program and I'm
grateful to have another portfolio piece that I can display on my website.

If I had been able to put in more time than the ~60 hours already spent getting
the system to this stage, I would have liked to have implemented elliptical orbits
and bump mapping for Earth’s moon. I understand that without these non-trivial
extras my assignment is unlikely to gain the full 100%.

Overall, I believe that my work is deserving of around 90%. Below is my
justification, using the marking scheme as a guide.

Student number | 110059347

20% - Written report
This report is an accurate and honest description of my program and has been
written in the scientific style favoured during lectures.

15% - For correctly drawing the spheres

My WebGL solar system correctly draws the spheres representing the Sun,
planets and moons, at their correct scales (adjusted before rendering for
aesthetic purposes).

15% - For correctly texture mapping the spheres

Good, object-oriented code allows me to pass the URL of the texture map image
to each Astronomical Object as part of its individual constructor parameters. The
optional specular map texture parameter shows that my application makes use
of multi-texturing.

15% - For correctly lighting the spheres

My spheres are lit using Phong shading, as described in the assignment brief. A
GUI allows the user to adjust the lighting and shininess parameters and
immediately see the effects rendered onto the canvas. Specular maps can be
passed to Astronomical Objects for more realistic lighting effects.

15% - For correctly positioning and animating the spheres

[positioned the spheres at the correct relative distances to the Sun, and each
planet, moon and star spins on its scientifically correct axis. The Astronomical
Objects orbit and rotate at the correct speed proportional to one another, and
this speed is adjustable using the GUI.

20% - For additional functionality implemented
Here is a list of additional functionality added to my system:

* Assuggested in the brief, I've added the rings of Saturn. These are
correctly tilted and are semi-transparent, as seen in Figure 3.

* Specular mapping of the Earth makes use of multi-texturing to improve
the realism of the Phong shading. This was built in an abstract way so that
specular maps could be passed to any of the Astronomical Objects easily.

* Keyboard controls (including general navigation and planet ‘snapping’)
and mouse controls allow easy navigation around the solar system.

* GUI elements allow the user to control the lighting conditions of the solar
system as well as the orbital and rotational speed of the elements.

* An attractive web interface, decoupled from the specifics of the
application, containing content and scripts that progressively enhance the
user experience.

* Additional documentation for the API of the JavaScript itself. This is
generated by the "yuidoc® Grunt task reading the comments in my code
and can be accessed by clicking the ‘Documentation’ link from index.html.

* Finally, I've added a universe background to make the solar system look
more realistic and add an element of depth.

10

Student number | 110059347

References/Acknowledgements

Orbit distances taken from:
http://www.northern-stars.com/solar_system_distance_scal.htm

Orbit periods and rotation periods taken from:
http://www.windows2universe.org/our_solar_system/planets_table.html

Planet sizes taken from:
http://www.universetoday.com/36649 /planets-in-order-of-size/

Planet axes taken from:
http://www.astronomynotes.com/tables/tablesb.htm

Jupiter's Galilean moons information taken from:
http://www.daviddarling.info/encyclopedia/J/Jupitermoons.html

Saturn's rings info taken from:
http://cseligman.com/text/planets/saturnrings.htm

Planet texture maps were taken from:
http://planetpixelemporium.com/

Lots of code taken from/inspired by various lessons at:
http://learningwebgl.com/blog/?page_id=1217

Phong shading heavily based upon:
http://learningwebgl.com/blog/?p=1658

Specular map code heavily based upon:
http://learningwebgl.com/blog/?p=1778

Spinning GIF image data taken from:
https://github.com/BBCVisualJournalism/newsspec_8939/blob/master/
source/js/lib/news_special /iframemanager__host.js#L79

11

